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Abstract  

The heterogeneous nature of today’s evolving 

health databases requires new techniques and 

approaches to process these data and extract 

clinically useful information. This relevant 

information obtained can be used to improve 

the response rate of cardiac resynchronization 

therapy (CRT) in patients with heart failure. 

Hierarchical clustering (HC) which is an 

unsupervised ML technique may uncover 

clusters within the bulk of data of the patient 

population which is useful for strategies toward 

precision and personalized medicine. This study 

aims to investigate how HC can be used to 

automatically group a bulk of clinically acquired 

CRT data into clusters and subgroups that could 

confer clinically relevant information. About 

165 patient data were used in the study and the 

analysis resulted in 4 different phenogroups 

with varying response rates. Some features 

were statistically significant when compared 

within the subgroups. Lastly, the study 

concludes that HC can be used to integrate and 

analyze different kinds of clinical data to aid in 

the identification of HF patient subgroups that 

are likely to respond to CRT. 

 

INTRODUCTION 

Personalized medicine as a clinical model 

separates people into different groups. This 

classification aids doctors and researchers to 

predict and tailor accurate, efficient, and highly 

effective treatments and prevention strategies 

for certain groups of patients with particular 

ailments. As opposed to using generalized 

treatments for all groups of people with certain 

diseases with little consideration for the 

differences in patients. Heart failure (HF) is a 

disease known to have different signs and 

symptoms in a variety of patient groups with 

some treatments having little to no success. 

Cardiac resynchronization therapy (CRT) for HF 

patients is a therapy where individualized 

treatments for every unique patient could help 

overcome the limitations of traditional HF 

treatments. 

 

Cardiac Resynchronization Therapy 

Cardiac Resynchronization Therapy (CRT) is a 

type of medical treatment that is used for the 

treatment of patients suffering from various 

degrees of heart failure. It comprises the use of 

a specialized pacemaker medically referred to as 

a cardiac resynchronization therapy pacemaker 

(CRT-P) or an implantable cardioverter- (CRT-D) 

which is designed to improve the functionality of 

the heart. CRT is a standard clinical treatment for 

a group of end-stage HF patients where a device 

sends little electrical charges to both lower 

chambers of the heart to help them beat 

together in a synchronized pattern which 

improves the heart’s ability to pump blood and 

oxygen to the body[1]. This device is implanted 

under the patient’s skin in the chest region and 

connected to one of two leads placed inside the 

heart. The function of the device is to send 

electrical impulses to the two ventricles of the 

heart; the heart pumping efficiency is improved 

through the synchronization of the contractions 

made possible by this device, further helping 

patients with symptoms such as fatigue, 

shortness of breath, and swollen legs. CRT is 

considered for heart failure patients who have 

explored correcting their heart condition 

through medication therapies without success. 

While this therapy is suitable for heart failure 

patients who have moderate to severe 



symptoms with irregular heartbeat, or reduced 

ejection fraction, it is not suitable for patients 

with diastolic heart failure, mild HF symptoms, or 

patients whose left and right heart chambers 

beat synchronously. However, it may also be 

recommended for heart failure patients who 

have QRS complex (ventricular depolarisation)on 

their electrocardiogram, an indication that 

electrical impulses in the heart are not properly 

synchronized or are delayed.  

 

Cardiac Resynchronization Therapy Devices 

CRT devices help the heart beat more efficiently 

and help to monitor HF condition so that the 

physician can provide the right treatment. A CRT 

device has two main components which are the 

pulse generator and the thin insulated wires 

called leads which deliver a small amount of 

electrical energy to the heart to help restore the 

normal timing of the heart. The two types of CRT 

devices are the cardiac resynchronization 

therapy pacemaker (CRT-P) or biventricular 

marker and the same device with a built-in 

implantable cardioverter defibrillator called 

cardiac resynchronization therapy defibrillator 

(CRT-D) [1]. The devices enhance the outcome in 

heart failure patients; however, there is also a 

significant portion of patients that does not 

respond to the therapy devices [2]. Several 

studies have shown improved CRT response 

prediction that includes varying criteria such as 

the Left Bundle Branch Block (LBBB), Left 

Ventricle (LV) activation time, intrinsicoid 

deflection onset as well as the frequency content 

and area of the Q wave, R wave and S wave 

(QRS). QRS shows the electrical impulse as it 

spreads through the ventricles and indicates 

ventricular depolarization. Just like all medical 

procedures, CRT has its potential complications 

and risks which may include device malfunction, 

bleeding, and infection. These potential risks as 

well as the benefits should be discussed with 

patients in order to determine whether they find 

it an appropriate treatment option. 

 

Figure 1: implanted Cardiac Resynchronization 

Therapy Pacemaker (Source 1) 

 

 

Figure 2: implanted Cardiac Resynchronization 

Therapy Defibrillator  (Source 1) 

 

Indications of Cardiac Resynchronization Therapy 

The guidelines from the American Heart 

Association/American College of Cardiology 

Foundation (AHA/ACCF) for the management of 

HF which was published in 2013 were 

harmonized with the AHA/ACCF/Heart Rhythm 

Society (HRS) 2012 and referred to as the 

updated ACC/AHA/HRS guidelines [3]. The 

criteria for CRT implantation are New York Heart 

Association (NYHA) functional class II and III with 

sinus rhythm, Left ventricular Ejection Fraction 

(LVEF) < 35%, QRS width > 150 ms or 120 to 150 

ms with Ventricular Electrical Dyssynchrony (ED) 

by LBBB. Although about 30% of patients do not 

respond to CRT due to common variables such as 

low LVEF, sinus rhythm, LBBB pattern, QRS 

duration >150ms on electrocardiogram (ECG), 



and the New York Heart Association (NYHA) class 

II, III, and ambulatory IV symptoms. This study 

also includes not only the Electrical 

Dyssynchrony (ED) data, which would be QRS 

enlargement (> 150 ms) and LBBB but also the 

presence of Mechanical Desynchronization 

(MD). 

 

Machine Learning  

Machine learning is a subfield of Artificial 

Intelligence that comprises the development of 

models and algorithms to enablement of 

computers to make decisions and predictions 

based on data inputs. It is used in a wide range 

of applications including supervised and 

unsupervised learning, allowing computers to 

recognize and classify data based on what was 

learned from the training data. The current trend 

in data analysis is towards technical approaches 

such as Machine Learning (ML) and even more 

powerful techniques like deep learning which 

uses neural networks to solve complex 

problems. However, deep learning requires a 

large set of data and this volume of data is often 

lacking in clinical medicine to aid better clinical 

predictions [4]. Machine learning is a part of 

artificial intelligence that gives computer 

systems the ability to learn automatically with 

little to no human intervention and it adjusts its 

actions accordingly without being explicitly 

programmed. Machine learning improves the 

analysis of large quantities of data and is being 

used in a variety of applications like predictive 

analytics, email filtering, and computer vision. 

Awan et al [5] discussed the application of 

machine learning methods in diagnosis, 

classification, readmissions, and medication 

adherence in patients with heart failure. Also, ML 

techniques have been applied to identify distinct 

phenogroups in HF patients with preserved 

ejection fraction (HFpEF) as well as several 

diseases [6,7]. Thus, machine learning 

approaches may be used to improve CRT 

response prediction in patients with heart 

failure. 

Supervised machine learning is a machine 

learning system that uses algorithms to predict 

output variables (future events or analysis) 

based on the labeled input data (training 

dataset). While supervised ML provides targets 

for any new input after sufficient training, it 

requires a massive dataset to train on, the 

interpretation of results varies, and it is 

susceptible to errors. On the other hand, 

unsupervised ML requires no training or labeling 

as it explores unlabelled data and can draw 

inferences from datasets to describe hidden 

structures [4]. Unsupervised ML groups or 

clusters patients together based on multiple 

characteristics in the dataset, which could be 

clinical, demographic, or measured. The 

grouping of similar patients together in varying 

groups or dimensions, then makes it possible to 

analyze the similarities in the groups of patients 

and relate them to clinical outcomes or 

therapeutic responses. 

 

Hierarchical Clustering 

Hierarchical clustering is a clustering algorithm 

that is sued in data mining and machine learning. 

It involves a bottom-up approach that is initiated 

by considering each data point as a separate 

cluster and subsequently merging the closest 

clusters until all available data points are unified 

into a single cluster. The hierarchical clustering 

technique is a good way to reveal anatomical 

subgroups from clinical data as they do not need 

any prior information about the population of 

the study. Also, HC does not require conditioning 

of an expected number of subgroups in contrast 

to K-means clustering which involves specifying 

a required number of subgroups. Some studies 

have applied HC techniques to 3D patient shape 

data and the outcome depends hugely on the 

clustering distance metrics and linkage option of 

choice [8]. 

Furthermore, HC results are graphically depicted 

in a tree-like structural diagram called a 

dendrogram that shows how similar objects are 

grouped together, while dissimilar objects are 

grouped on different branches of the tree. 



However, assessment of the similarity or 

dissimilarity and clustering results of objects is 

dependent on the similarity or distance metric is 

chosen where low inter-object distance 

connotes high similarity. Also, the linkage 

function is another huge determinant of how 

objects are linked together to form a subgroup. 

Choosing the appropriate distance or linkage 

combination is necessary to achieve meaningful 

results. 

 

Aim And Significance of The Study 

An area where clustering of patient groups could 

improve the selection of patients and accurately 

predict their clinical outcome is CRT for HF 

patients. This is due to the fact that despite clear 

criteria for which patients should undergo CRT, a 

significant percentage of patients do not respond 

to this treatment option [9]. This study 

hypothesized that new approaches based on 

unsupervised ML techniques which incorporate 

demographic, clinical, and Echocardiographic 

(ECG) and Single Photon Emission Computed 

Tomography Myocardial Perfusion Imaging 

(SPECT MPI) data including both electrical and 

mechanical dyssynchrony may be used to better 

depict how ML can be utilized to phenogroup HF 

patients in correlation to their characteristics 

and predict clinical response.  

Supervised ML mainly trains a model on a 

labeled dataset where the input data is split into 

training and test datasets and the algorithm 

learns to predict the output from the input data. 

Thus, unsupervised ML is used for this study 

instead of supervised ML because our aim is to 

identify hidden patterns or underlying grouping 

structures in our data in order to better predict 

heart failure patients' subgroups that are likely to 

respond to CRT. We utilized data from ten 

centers in 8 countries with NYHA functional class 

II, III, and IV with sinus rhythm, LVEF < 35%, QRS 

width > 150 ms or 120 to 150 ms with Ventricular 

Electrical Dyssynchrony (ED) by Left Bundle 

Branch Block (LBBB) to determine if HC as an 

unsupervised ML technique could help discover 

unknown patterns in the data and to identify the 

patient subgroups that are more likely to 

respond to CRT. 

 

RELATED LITERATURE 

Several studies have tried to find parameters or 

factors that could significantly improve CRT 

efficacy. The use of Single Photon Emission 

Computed Tomography (SPECT) images to assess 

LV’s latest activation was shown in [10] to 

improve the rate of placing LV on target and 

ultimately produced a positive improvement in 

CRT response. Other studies have used machine 

learning approaches to predict mortality in 

patients with coronary artery disease. Cikel et al 

[4] researched the use of ML to accurately 

phenogroup selected CRT patients to determine 

trends that can result in improved CRT response. 

The study used unsupervised learning methods 

to help in the identification of patients likely to 

respond to the therapy by integrating clinical 

features with echocardiographic data on 

myocardial infarction and left ventricular volume 

changes that were measured over an entire 

cardiac cycle. 

The results from the study showed that full 

unsupervised ML techniques can provide a 

clinically relevant classification of a 

heterogeneous group of HF patients which can 

aid the identification of patient subgroups most 

likely to respond to particular therapies. 

However, the paper reiterated that the feasibility 

of the proposed model for phenogrouping HF 

patients and in clinical decision-making should 

be assessed in a prospective controlled trial. 

Additionally, Matthew et al [9] also used 

machine learning-based unsupervised clustering 

analysis to identify clinically distinct phenotypic 

subgroups in a highly dimensional mixed-data 

group of individuals with heart failure with 

preserved ejection fraction (HFpEF). This study 

was able to identify phenogroups of HFpEF 

patients with distinct clinical characteristics and 

lasting outcomes. 

 



METHODOLOGY 

Study Design and Patient Population 

The population used for this study has been 

previously used by a prospective, multicentre, 

non-randomized trial: ‘Value of intraventricular 

synchronism assessment by gated-SPECT 

myocardial perfusion imaging in the 

management of heart failure patients submitted 

to cardiac resynchronization therapy’ (IAEA 

VISION-CRT) [11]. In brief, the VISION-CRT trial 

involves subjects from ten centers in 8 countries 

(Brazil, Chile, Colombia, Cuba, India, Mexico, 

Pakistan, and Spain). The main investigators of 

the respective countries recorded all the clinical, 

CRT, and follow-up information in individual 

forms for each patient. The data from the 

Myocardial Perfusion Imaging by Gated Single 

Photon Emission Computed Tomography 

(gSPECT MPI) were recorded too. The overall 

data was collected by the central management 

center in the IAEA headquarters in Vienna. The 

subjects underwent a detailed clinical and gated 

SPECT MPI evaluation before recruitment to the 

study and all patients provided written informed 

consent. The criteria for patient inclusion were: 

symptomatic HF patients over 18 years old with 

NYHA functional class II, III or ambulatory IV with 

HF for at least three months before enrolment; 

LV ejection fraction ≤ 35% from ischemic or non-

ischemic causes, measured according to the 

usual procedure at the participating center for 

inclusion, although LVEFs used for analysis came 

from the nuclear core lab; sinus rhythm with 

LBBB configuration defined as a wide QRS 

duration ≥ 120ms. The Exclusion criteria were: 

pregnancy or breast-feeding; arrhythmias that 

prevented the gated acquisition; right bundle 

branch block; a major coexisting illness affecting 

survival less than one year; acute coronary 

syndromes, coronary artery bypass grafting, or 

percutaneous coronary intervention in the last 3 

months before enrolment and within 6 months 

of CRT implantation. The patients were classified 

as ‘responders’ to CRT if they had an increase of 

LVEF > 5% or a decrease in End Systolic Volume 

(ESV) < -15% as measured by gated SPECT MPI at 

follow-up. Others were classified as non-

responders. 

 

SPECT MPI Evaluation  

Gated SPECT scans were performed about 30 

minutes after injection using 20-30mCi of 

99mTcsestamibi or tetrofosmin of 740 to 1110 

MBq. The images were acquired in gamma 

cameras using 180° orbits with a complimentary 

8 or 16 frames ECG-gating. The Ordered Subset 

Expectation maximization (OSEM) method with 

three iterations and ten subsets filtered by a 

Butterworth filter to the power of 10 and a cut-

off frequency of 0.3 cycles/mm were used to 

reconstruct the images and this was done by 

Emory Reconstruction Toolbox (ERToolbox; 

Atlanta, GA). The resulting reoriented short-axis 

images were sent to Emory Cardiac Toolbox 

(ECTb4, Atlanta, GA) for automated accessing of 

LV function, including LVEF, left ventricular end-

systolic volume (LVESV), left ventricular end-

diastolic volume (LVEDV), LV shape, including 

end-systolic eccentricity (ESE) and end-diastolic 

eccentricity (EDE), and LV mechanical 

dyssynchrony and includes phase standard 

deviation (PSD) and phase bandwidth (PBW) 

[11]. 

 

Baseline Attributes 

The complete data of clinical assessment, 

baseline SPECT MPI, and clinical six-month 

follow-up data were obtained in only 177 

patients out of the initial 199 patients that 

underwent CRT. About 11 patients among the 

177 patients died before follow-up and 1 patient 

had an extremely low ESV which is an outlier 

caused by the low resolution of gated SPECT MPI 

when measuring a small heart. This study finally 

utilized the data from 165 patients for its 

analysis. The covariates consist of a range of 

domains including demographics, clinical 

variables, laboratory data, SPECT MPI 

measurements, and an electrocardiographic 

parameter. Overall, a total of 26 continuous and 



categorical variables were used in the clustering 

analysis 

 

Characterisation of Phenogroups 

An agglomerative hierarchical clustering 

algorithm was used to group similar objects into 

clusters such that each observation starts in its 

own cluster and pairs of clusters are merged as 

one moves up the hierarchy. The hierarchical 

relationship between the different sets of data is 

shown in a tree-like diagram called a 

dendrogram. Furthermore, the distance 

between the data points on the x-axis represents 

the dissimilarities between the points while the 

height of the blocks on the y-axis represents the 

distance between the clusters. Of the three most 

common linkage methods: single, complete, and 

average linkage methods, the complete linkage 

method was used to merge the clusters in the 

dendrogram as it tends to find compact clusters 

of approximately equal diameters. The complete 

linkage method also avoids the disadvantage of 

the alternate single linkage method where 

clusters are forced together due to single objects 

being close to each other, even when many of 

the objects in each cluster may be largely distinct 

from each other. The number of clusters was 

chosen by drawing a horizontal line to the 

longest line that traverses the maximum distance 

up and down without intersecting the merging 

points. This was done on our dendrogram at both 

a distance of 600 which gave 2 clusters and a 

distance of 400 which gave 4 clusters and the 

respective numbers of clusters were analyzed 

separately. Having done the analysis, 4 clusters 

were finally used for further analysis as it was 

more statistically significant.  

After the clusters were grouped into four, the 

differences in demographics, clinical variables, 

laboratory data, SPECT MPI measurements, and 

echocardiographic parameters were compared 

between the phenogroups. Continuous variables 

were summarized in means and standard 

deviations while categorical variables were 

summarized in numbers and percentages. The 

differences between groups were tested using a 

one-way ANOVA for continuous variables and a 

Chi-squared test for categorical variables. A p-

value of <0.05 was considered statistically 

significant. The resulting dendrogram was 

internally validated by shuffling the dataset and 

reducing the number of rows and columns to 

create clusters and compare their differences in 

terms of clinical characteristics and the response 

outcome. Clustering the phenogroup into 4 

clusters was more statistically significant and the 

ML algorithm used for all the analysis in this 

study was done in python version 3. 

 

 

Figure 3: Code snippets of Hierarchical clustering  



 

Table 1: Baseline characteristics of the study patients by phenogroups 

S/
N 

FEATURES OVERALL 
AVERAGE 
(meanSD) 
(count(%)) 
N=165 
(98R, 
67NR0 
59%R 

PHENO- 
GROUP 
ONE 
 
n=42 
(21R, 
21NR) 
50%R 

PHENO- 
GROUP 
TWO 
 
N=81 
(55r, 26NR) 
68%R 

PHENO- 
GROUP 
THREE 
 
N=16 
(10r, 
6NR) 
63%R 

PHENO- 
GROUP 
FOUR 
 
N=26 
(12R, 
14NR) 
46%R 

GROUP 
P-
VALUE 

1 ACEI_or_ARB 136(82%) 29(69%) 72(89%) 14(88%) 21(81%) 0.049 

2 Age 60±11 61±10 61±12 58±10 58±10 0.1 

3 CAD 51(31%) 16(38%) 23(28%) 2(13%) 10(38%) 0.213 

4 Concordance 40(25%) 12(29%) 16(20%) 6(38%) 6(23%) 0.412 

5 DM 41(25%) 8(19%) 22(27%) 6(38%) 5(19%) 0.424 

6 ECG_pre_QRSd 161±25 156±23 159±24 61±28 176.6±21 0.0009
2 

7 Gender  M=98(59%
) 
F=67(41%) 

M=31(74% 
) 
F=11(26%) 

M=33(41%
) 
F=48(59%) 

M=13(81 
%) 
F=3(19%) 
 

M=21(81% 
) F=5(19% 
 

0.0 

8 HTN 97(59%) 29(69%0 40(49%) 11(69%) 17(65%) 0.116 

9 LBBB 165(100%) 42(100%) 81(100%) 16(100%) 26(100%) 1.0 

10 MI 35(21%) 11(26%) 12(15%) 2(13%) 10(38%) 0.047 

11 NYHA II=46(28%) 
III=101 
(61%) 
IV=18 (11% 

II=12(29%) 
III=27(64%) 
IV=3(7%) 

II=28(35%) 
III=47(58%) 
IV=6(7%) 

II=3(19%) 
III=9(56% 
) 
IV=4(25% 
) 

II=3(12%) 
III=18(69%) 
IV=5(19%) 

0.094 

12 Race 
I – Africa 
II – ASIA 
III – CAUCASIAN 
IV – HISPANIC 
V – INDIAN 

I=17(10%) 
II=6(4%) 
III=23(14%) 
IV=87(53%
) 
V=32(19%) 

=6(14%) 
II=1(2%) 
III=5(12%) 
IV=24(57%
) V=6(14%) 

I=4(5%) 
II=3(4%) 
III=14(17%) 
IV=37(46%
) 
V=23(28%) 

I=2(13%) 
II=2(13%) 
III=1(6%) 
IV=8(50% 
) 
V=3(19%
) 

I=5(19%) 
II=0(0%) 
III=3(12%) 
IV=18(69%
) V=0(0%) 

0.033 

13 SPECT_pre_EDE 0.5±0.2 0.5±0.1 0.6±0.2 0.5±0.2 0.5±0.2 0.17 

14 SPECT_pre_EDSI 0.8±0.1 0.8±0.1 0 .8±0.1 0.9±0.1 0.9±0.1 0.13 

15 SPECT_pre_EDV 257.6±105 277.8±38 176±44 476.3±55 347.1±30 <0.001 

16 SPECT_pre_ESE 0.6±0.2 0.6±0.2 0.6±0.2 0.4±0.2 0.4±0.2 0.009 

17 SPECT_pre_ESSI 0.8±0.1 0.8±0.1 0.8±0.1 0.9±0.1 0.9±0.1 0.004 

18 SPECT_pre_ESV 192.7±96 209.2±28 117.4±37 396±62 275.2±27 <0.001 

19 PECT_pre_LVEF 27.7±10.3 24±7.0 4.1±9.5 17.1±5.1 20.6±6.0 0.003 

20 SPECT_pre_PBW 152.4±73.8 191.7±66.3 106.5±49.7 239.9±47 
.9 

178.2±64.9 0.24 

21 SPECT_pre_PSD 48.8±19.7 56.7±15.6 37.6±15.7 72.9±15. 
2 

55.8±17 0.09 

22 Smoking 27(16%) 7(17%) 15(19%) 2(13%) 3(12%) 1.0 



23 SPECT_pre_50sca
r 

25±14.4 29.2±13.6 17.8±11.5 35.1±15 31±14.3 0.827 

24 LVEF 25±6.0 24.5±4.4 27.2±5.6 20.4±5.4 22±6.7 0.005 

25 Echo_pre_EDV 192±36.8 193.3±17 180.7±33 195.3±10 224.4±30 0.0002 

26 Echo_pre_ESV 149±37.9 155.3±21.6 132.3±30.8 157±18.3 187.7±53.5 0.0000
6 

  

 

RESULTS 

Of the 165 patient data used in this unsupervised 

learning study, there was a 59% response rate 

where 98 participants responded to CRT and 67 

patients had no response. The race population 

was 53% Hispanic, 19% Indian 14% Caucasian, 

10% African, and 4% Asian. The baseline 

characteristics of the study population are 

shown in Table 1. For all the patients, the age was 

60 ± 11 years, and 98 (59.4%) patients were 

male. Fifty-one (30.9%) patients had a previous 

history of CAD while 97 (58.8%) had 

Hypertension (HTN). About 27(16%) are smokers 

while 41 (24.8%) had diabetes mellitus (DM). 

Although the study data have NYHA class II, III, 

and IV, NYHA class III was predominant in the 

data with a rate of 61%. Myocardial infarction 

was not prevalent among the participants as it 

was present in only about 21%. 

There were no statistically significant differences 

in age and the NYHA class distributions across 

phenogroups. Participants in phenogroup 1 had 

the lowest mean of ECG_pre_QRSd and a high 

number and rate of HTN as compared with the 

other groups. Phenogroup 2 had the highest 

burden of DM and the most significant response 

rate in females. It is also the group with the 

highest response rate and the least rate of 

hypertensive patients. While phenogroup 3 had 

the least burden of CAD and MI and the highest 

rate of DM. Phenogroup 4 had the least 

responders to CRT, the highest rate of NYHA class 

III patients, and the largest ECG_pre_QRSd mean 

as compared with the other groups. While 

phenogroup 1 and 4 had the same intermediate 

rates of both CAD at 38% and DM at 19%, 

phenogroup 1 and 3 had the same intermediate 

burden of HTN at 69%. 

Among SPECT MPI parameters, phenogroup 1 

participants had an intermediate high mean 

values for LVEF, SPECT_pre_LVEF, 

SPECT_pre_PSD and SPECT_pre_PBW as 

compared with the other phenogroups. While 

phenogroup 2 had the least mean values for 

SPECT_pre_EDV, SPECT_pre_ESV and 

SPECT_pre_50scar but has the highest mean and 

standard deviation of SPECT_pre_LVEF when 

compared with the other groups. Phenogroup 3 

had the highest means for SPECT_pre_PBW, 

SPECT_pre_PSD and SPECT_pre_50scar values. 

The highest mean and standard deviation of 

SPECT_pre_ESV values are found in this group as 

well. Finally, the highest mean and standard 

deviation of Echo_pre_ESV and Echo_pre_EDV 

were in phenogroup 4. 



 

Figure 4: Hierarchical Clustering Dendrogram 

 

Table 2: Dissimilarity between phenogroups 

S/N Phenogroup 1 Phenogroup 2 Phenogroup 3 Phenogroup 4 

 - Least mean of 
ECG_pre_QRSd  
 
- Intermediate high 
values for LVEF, 
SPECT_pre_LVE F 
SPECT_pre_PSD, 
SPECT_pre_PBW 

- Highest responder 
group  
 
- High proportion of 
patients with Diabetes 
Mellitus  
 
- Most significant 
response rate from 
females  
 
- Least rate of 
hypertensive patients 
  
- Has the highest mean 
and a wider range of 
SPECT_pre_LVEF  
 
- Least mean of 
SPECT_pre_EDV and 
SPECT_pre_ESV values 
 
 - Least mean and 
standard deviation of 
SPECT_pre_50scar 
values 

- Has the highest 
mean and a wider 
range of 
SPECT_pre_EDV 
values  
 
- Has lowest rate of 
NYHA class III 
patients  
 
- Has the highest 
mean and a wider 
range of 
SPECT_pre_ESV 
values  
 
- Has the highest 
mean of 
SPECT_pre_PSD 
and 
SPECT_pre_50scar 
values 

-Has least 
responders to CRT 
 
 - Has longest QRS 
duration  
 
- Has highest rate of 
NYHA class III 
patients 
 
 - Has a high 
SPECT_pre_50sc ar 
mean and the 
highest standard 
deviation  
 
- Has the highest 
mean of 
Echo_pre_EDV 
values 
 
- Has the highest 
mean and standard 
deviation of 
Echo_pre_ESV 
values 
 
 

 

DISCUSSION 



Heart failure is a disease characterized by 

multiple syndromes and its response to 

therapies is based on a couple of factors such as 

biomarkers, clinical data as well as imaging 

parameters. Conventional techniques to predict 

outcomes within HF subgroups rely on isolated 

parameters such as QRS morphology, presence 

or absence of specific comorbidities, HF cause, 

cardiac structure, and function amongst others. 

Thus, while the use of echocardiographic 

analysis tools to assess cardiac structure and 

function can establish subgroups of HF patients 

at higher risk for negative outcomes [12], 

echocardiographic data contains a lot of 

information representing several time points in a 

cardiac cycle this is replaced by single 

measurements in standard quantitative data 

analysis which does not take into account the 

complex events of the entire cardiac cycle. 

In this study, hierarchical clustering as a form of 

unsupervised ML has been shown to aid the 

integration of demographic data, clinical data, 

laboratory data, and SPECT MPI parameters to 

group patients with certain diseases such as HF. 

The research demonstrates the value of 

combining different sets of descriptors to find 

patients that are more likely to respond to CRT as 

compared to the results gotten from 

independent analysis of clinical parameters only. 

The results from the study prove that 

unsupervised ML approaches can be used to 

combine standard clinical parameters, ECG data, 

and imaging parameters to provide a clinically 

interpretable and meaningful classification of 

the heterogenous phenotypes of HF patients and 

the likelihood of patients in certain subgroups to 

respond to specific treatment therapies. 

While studies such as Chung et al [13] tried to 

find a single echocardiographic measure of 

dyssynchrony to improve the selection of HF 

patients for CRT beyond the current guidelines 

without success. This study combines 

heterogeneous data in an unsupervised manner 

to ultimately find groups of patients with similar 

characteristics toward CRT response. The 

unsupervised ML method used allows the 

natural clustering of patients and results in the 

identification of patient subgroups in relation to 

their CRT response. Specifically, Phenogroups 2 

and 3 had a higher rate of response at 68% and 

63% respectively over the overall rate at 59%. 

Phenogroups 1 and 4 had the least response rate 

at 50% and 46% respectively. About 14 

parameters were statistically significant when 

compared within the 4 phenogroups. 

SPECT_pre_PSD, Echo_pre_ESV, Echo_pre_EDV, 

LVEF, SPECT_pre_PBW, MI, SPECT_pre_LVEF, 

SPECT_pre_ESV, SPECT_pre_ESSI, 

SPECT_pre_ESE, SPECT_pre_EDV, 

ECG_pre_QRSd, gender and ACEI_or_ARB. 

Some limitation of this study includes the small 

size used as well as the fact that HC does not 

work well with missing data. Though, the race 

parameter was significant in this study, this 

cannot be ascertained as the data was majorly 

from North America, South America and Asia. 

This means the data may be skewed towards a 

certain race over others and this is another 

limitation of this study. Furthermore, the results 

gotten from this study need to be externally 

validated. For future directions, further analysis 

using other unsupervised techniques such as 

principal component analysis may be able to 

ascertain the result or to help uncover other 

relevant clinical information. Another future 

work is the use of supervised classification to 

validate the result gotten in this study. 

 

CONCLUSION 

This study concludes that unsupervised ML 

approaches such as HC can be used to integrate 

and analyze ECG data, imaging parameters, and 

clinical data to aid in the identification of HF 

patients’ subgroups that are likely to respond to 

CRT. The results show that HC can provide a 

clinically relevant classification of a 

heterogeneous cohort of HF patients which can 

serve as a data-driven basis to identify patient 

phenogroups likely to respond to specific 

therapies. However, the feasibility of this HC 

approach for patient phenogrouping in HF and its 

contribution to the clinical decision-making 

needs to be evaluated with a large dataset, 



externally validated, and used in a prospective 

controlled trial. 
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